先进真空烧结生产线·精密检测设备
应用广泛 精度稳定 纳污量大 自主研发
金属纤维烧结毡生产工艺制造
●金属纤维滤毡的性能:85%的高孔隙率可保证滤材通过大流量,足够长的在线寿命和非常低的压力降,从而比选用其他滤材的过滤面积小。
●烧结金属纤维滤毡的多孔结构使得用户可以在机上进行在线反吹或反冲洗。
●薄膜型的滤材容易折波和焊接。烧结过程中纤维的交联处被熔焊在一起使滤材具有高强度,加之足够大的内部空间,滤材可以承受热冲击、高压力以及频繁地反向脉冲清洗。
●不同合金材质的金属纤维滤材可以被用于高温,甚至高达1000℃的高腐蚀工况,其他材质如化纤或陶瓷等非金属织物无法与之相比。
●滤材的梯度型孔结构可以达到更高的效率。作为深度型过滤时,正向安装时具有足够高的纳污能力;作为表面型过滤时,反向安装形成滤饼可以进行在线反洗。
●不绣钢和其他的合金具有热膨胀性低、不脆、易焊接、受热冲击不变形的特点,可以选择合适的合金来满足强度和苛刻的工况需求。
●在应用深度过滤时,建议以选择多层结构,以增加纳污能力。
●烧结金属纤维滤毡生产出许多形状和系列:烛芯式滤芯(折波或不折波)、碟片式滤盘。当需要高压精细熔体过滤时,用烧结有双面职称网的金属纤维滤材加工的滤盘替代滤芯过滤效果会更好。
烧结温度对纤维烧结毡的影响
烧结工艺是影响金属纤维烧结毡微结构的一个关键过程,而烧结温度是金属纤维烧结毡工艺**重要的参数,本文以6 μm纤维毡为例进行分析。6 μm纤维毡在这3种温度下都有明显的烧结颈,但是在3种温度下纤维烧结毡展现了3种不同的形貌。a是6 μm纤维在1 200 ℃烧结后形成的烧结颈,上下2根垂直的纤维在相切处形成烧结颈,且烧结毡的直径大于纤维直径,但是2根纤维没有熔合的趋势;当烧结温度为1 250 ℃时,2根垂直纤维的烧结毡直径比1 200 ℃时更大,且烧结毡附近处纤维有熔合的趋势,这反映了烧结毡处形成的新晶界通过晶界扩散同时向上下2根纤维推进,且烧结毡附近纤维直径有所收缩,这可能是因为随着烧结温度的升高,金属原子沿着纤维长度方向扩散至烧结毡处,导致纤维直径收缩,而1 200 ℃的纤维烧结毡没有此现象;当烧结温度为1 300 ℃时,烧结毡附近的纤维有明显的融合,这是由于烧结温度继续升高,晶界扩散更快,烧结毡附近纤维中物质扩散到新晶粒中,从而熔合在一起,此时烧结毡处纤维也有比较明显的收缩,6 μm纤维毡在1 300 ℃时无熔断。
纤维烧结毡搭接点的焊接是通过扩散进行的。烧结初期,相互接触的纤维搭接点逐渐形成烧结毡的连接,此时搭接点是不连续的,且有大量孔隙,扩散的主要机制是表面扩散;烧结中期,烧结毡的孔隙逐渐消失,烧结毡逐渐形成晶界,此时扩散的主要机制是晶界扩散;烧结后期,烧结毡附近晶粒开始长大,此时晶粒长大体扩散是主要机制。扩散的实质是原子的热运动,温度显著影响着原子扩散速度,对于表面扩散来说,只有当烧结温度足以使纤维表面原子的热运动克服表面能垒时,才能形成烧结毡,因此纤维烧结毡应超过一定温度。同样,烧结温度影响着纤维原子晶界扩散的速度,烧结温度越高晶界扩散速度越快,纤维烧结毡速度越快;但是过高的烧结温度会使纤维出现晶粒过大、丝径收缩和过熔等缺陷,这是纤维烧结毡工艺需要避免的。
烧结毡上料机的工艺
低硫原料配入法
烧结毡上料机气中的SO2的来源主要是铁矿石中的FeS2或FeS、燃料中的S(有机硫、FeS2或FeS)与氧反应产生的,一般认为S 生成SO2的比率可以达到85%~95%. 因此,在确定烧结原料方案时,适当地选择配入含硫低的原料,从源头实现对SO2排放量的控制,是一种简单易行有效的措施。
该法因对原料含硫要求严格,使其来源受到了一定的,烧结矿的生产成本也会随着低硫原料的价格上涨而增加。就原料短缺的现状来看, 此法难以全面推广应用。
高烟囱稀释排放
烧结毡上料机气中SO2的质量浓度一般在1000~3000 mg/m3且烟气量大,若回收在经济上投资较大,故大多数国家仍以高烟囱排放为主,如美国烟囱**高达360m.
我国包钢烧结厂采用低含硫原料、燃料,烧结烟气经200m高烟囱排放,SO2**大落地质量浓度在0. 017mg/m3以下。宝钢的烧结厂采用200 m高烟囱稀释排放。这种方法简单易行,又比较经济。从长远来看,高烟囱排放仅是一个过渡。但在当时条件下,采用高烟囱稀释排放作为控制SO2 污染的手段是正确的。
烟气脱硫法
低硫原料配入法和高烟囱排放简单易行,又较经济。但我国SO2的控制是排放浓度和排放总量双重控制,因此,为根本消除SO2污染,烟气脱硫技术在烧结厂的应用势在必行。
烟气脱硫是控制烧结烟气中SO2污染**有效的方法。世界上研发的烟气脱硫技术有200多种,进入大规模商业应用的只有10余种,我国也先后引进了不同的脱硫装置主要用于火电厂,而国内用于烧结烟气脱硫的技术进展较慢。国内仅有几个小烧结上了脱硫设施。如广钢2台24平烧结机采用双碱法工艺,临汾钢厂利用烧结烟气处理焦化废水等,因脱硫设施或多或少存在一些问题,所以运行也不正常。
不锈钢纤维烧结毡滤芯的反洗再生特性
不锈钢纤维烧结毡滤芯的过滤材料主要采用不锈钢纤维烧结毡和不锈钢方孔网为过滤材料,烧结毡滤芯的各个密封接口采用氩弧焊接工艺制作,滤芯直缝采用等离子自动焊接技术保证焊缝无焊渣焊瘤焊漏等现象,过滤各层滤网加工之前都要进行透光检测,透光不合格的不锈钢滤网一律不能采用,这样才能保证基础材料的性能,然后把多层不锈钢滤网叠加采用多褶折叠工艺进行加工,构建成一个完整的滤芯,多褶折叠加工工艺可以在同样尺寸的条件下,滤芯过滤面积增加三倍到五倍,可以让过滤效率更高。
整体焊接后还要对滤芯进行试验,检验每件滤芯是否达到规定要求。尤其对于较高含污量的液/固分离操作,这类将过滤设计为多层的组合结构,其过滤机制以表层网孔和滤饼捕捉为主。由单层较细金属丝网烧结所形成的过滤层属于直接拦截过滤,其优点就是将具有一定尺寸分布的杂质颗粒直接拦截在滤网外层表面,形成一层均匀的滤饼,进而随着滤饼的逐渐形成,又可以拦截到更小规格的颗粒,而且滤材表面形态均匀规则,网孔内部孔道光滑,既有利于滤饼层的快速形成,又便于滤渣的清除分离,因而烧结毡滤芯具有非常**的反洗再生特性,可以长期反复使用,特别适应于系统连续化运行和自动化操作等过滤技术的发展。
不锈钢金属烧结毡中金属纤维的制备方法
(1)熔体纺丝法:这是一种普遍用来生产玻璃纤维及合成纤维的方法,已成功地用于生产铝、锡、锌及铅等低熔点金属的纤维,可制出直径为25~250um的长纤维。但传统的熔融纺丝法不能简单地用于高熔点金属,因这些液态金属的表面张力大,故从喷丝孔喷出的液态金属丝很快断开变成球状,因此难以制出具有一定长度的金属纤维。采取以下措施可在不同程度上解除这种困难:一是利用间接物理方法使喷流稳定,二是改变液体喷流的表面状态,三是加速喷出金属的热量转移,使液态纤维在球化之前即凝固。
(2)悬滴熔体牵引法:不锈钢金属纤维烧结毡采用这种装置主要为加热器和激冷轮两个部分。金属线在加热器内熔化形成液滴,液滴表面与高速旋转的冷轮接触,以105℃/s的冷却速度凝固,并由激冷轮的离心力作用而抛出,金属线逐渐送入加热器形成连续的生产过程。所得小直径(25~75/um)的金属纤维基本呈圆形,大直径的金属纤维则呈弯月状。