乐发∨l先进真空烧结生产线·精密检测设备
应用广泛 精度稳定 纳污量大 自主研发
烧结毡除尘滤筒用气泡法分析孔径分布
气泡法测量多孔材料的孔径分布是一种简单易行的方法,采用线性插值的方法解析气泡所测得的流量与压差曲线,可得到孔体积和孔数分布曲线。对不锈钢纤维毡的测试结果表明,该方法解析得到的孔径分布较真实地反映出金属纤维毡的孔结构状况,以孔体积分布峰值所对应的孔径可近似确定这种过滤材料的过滤精度,其值偏差不超过±5.1%。
气泡法的基本原理是利用对材料有良好浸润性的液体介质(常用的有水、乙醇、异丙醇、四氯化碳等),先将样品在液体介质中充分浸润,然后再用另一种液体,如压缩空气将样品的毛细孔中的液体推移出去。当气体压力由小逐渐增大到某一定值时,气体将浸渍液体从毛细孔中推出而冒出一个气泡,继续加大压力使浸渍了液体的孔道逐渐变为气体的通路,气体流量也随之增加,冒出的泡越来越多,直到所有孔中的液体被排出。通过测量仪记录下整个过程的流量与对应压差的关系曲线,当流量与压差关系由开始的曲线过渡到直线后,则表示全部贯通都已透过气体,这时为孔径分布检测的终点。
烧结毡折叠滤芯有以下优点:
1.能较好承受热压力及冲击。
2.再生能力强,使用寿命长。
3.能较好的承受热应力和冲击,能在较高温度下和腐蚀介质中工作,可焊接、粘结及机械加工。
4.烧结毡折叠滤芯渗透稳定,过滤精度高。
5.烧结毡折叠滤芯强度高,塑性好,抗氧化,耐腐蚀,组装性好,能较好的承受热应力和冲击。
6.烧结毡折叠滤芯抗急冷急热,比纸质、铜丝网及其它纤维布等做成的过滤器性能**,且装拆清洗方便。
烧结毡折叠滤芯的还原性和再生性
烧结毡折叠滤芯是一种具备**的过滤性能的高精度、耐腐蚀和耐高温的过滤材料。在烧结毡中,它的纳污容量更大,并在使用中压力上升更慢,而更换的周期也更长。同时烧结毡的压力损失更小,并具备优良的渗透率和高孔隙率,通过焊接加工可以增加过滤的面积。
烧结毡折叠滤芯在使用中,其生产成本相对其他过滤材料而言也是比较高的。为节约降耗,同时也为了有利于环境保护,针对烧结毡有利还原再生的条件,可以进行再生处理。在还原再生过程中要全面考虑滤芯工作状态,过滤系统污染物类型及清洗程序。烧结毡的清洗方法有热处理清洗、化学清洗以及超声波三种清洗方式。化学清洗是**常用的也是**广泛和有效的清洗溶剂为酸碱清洗液。化学清洗法是针对收集聚脂凝结物过滤器常用的效果**好的清洗方法。
烧结毡折叠滤芯采用的超声波清洗则是一种连续加工和膨胀的加工方式。采用这种加工方式效率更高,通用性更强。而无论烧结毡采用哪种清洗的方式,都需要在清洗后进行完整性检查
更换烧结毡滤芯的原因
**先是烧结毡滤芯的质量, 虽然粉末烧结网状过滤器元件的孔径大致相同,但不同之处仅在于外层拦截的功能,但是不能实现所需的过滤效果,并且良好的粉末烧结网状过滤器元件的孔径是 它从外向内逐步减少,因此具有大的容尘量。
二是水质问题, 如果水质不稳定,会直接导致过滤元件中的颗粒过多,从而缩短循环周期。
预处理的效果很差,这种情况通常会发生得更多。 如果在预处理过程中添加的防垢剂和絮凝剂彼此不充分相容或甚至与水源不匹配,则粘性物质附着在烧结毡滤芯的表面上,从而使粉末烧结。 由于面积减小,网格过滤器元件经常变化。
什么样的措施来降低烧结毡滤芯更换的频率?
事实上,解决它并不困难。 水源一般是固定的,我们不能改变它,但可以通过改进预处理的操作和选择保证品牌的烧结毡滤芯来处理。 在预处理操作效果方面,可优化絮凝剂或黑丝抗凝剂,增加用量,可选择适合不同水源的阻垢剂,可完全调整各预处理功能,达到预处理效果。 理想的运营状态。 并严格遵守相关操作规程,确保预处理水质合格率。 另外,如果选择烧结毡滤芯,不仅可以保证过滤的准确性,还可以有效延长使用周期。
铁铬铝纤维烧结毡在折叠滤芯需注意什么
**先弄分明是过滤液体还是气体。并依据液体或者气体的特性选择滤膜资料或者是密封资料(参考化学兼容性表),过滤水溶液普通用亲水膜,过滤有机溶剂能够选用疏水膜,过滤空气用疏水膜。
过滤的流量依据消费工艺提供的通量来思索过滤器大小,滤芯数量。普通来说滤芯(10英寸)的流量为0.5吨/小时(过滤水的通量),比方要到达1.0T的通量,能够选用一芯30英寸的过滤器,适量的留一些余地,由于随着过滤的停止,杂质在滤膜表层积聚。
会招致通量降落,假如选用一芯20英寸的过滤器,那么则有可能达不到请求,压力、温度依据过滤时的过滤温度上下、压力上下,消毒条件等来肯定适宜的滤芯。普通的滤芯工作温度在80~90℃。活性炭纤维为65℃,不锈钢折叠为200℃。
钛烧结滤芯可到达280℃,压力为0.42Mpa/正向,钛烧结的为0.5Mpa,不锈钢折叠滤芯为0.6Mpa.过滤请求过滤需求到达的水平或者说精度(除菌、除颗粒请求)。深层膜过滤和膜过滤,两者的过滤**率是不一样的,例如除菌根本上选用精度0.2um;去除可见颗粒选择相对精度10-20um即可。