先进真空烧结生产线·精密检测设备
应用广泛 精度稳定 纳污量大 自主研发
烧结网和烧结毡怎么选择
1、比材质
烧结网的材质为同种或多种不锈钢金属编织网,而烧结毡的材质为不同丝径的金属纤维。
2、比烧结工艺
二者虽然都冠以烧结之名,但是在工艺上却是不同的。**先是烧结的温度,烧结网是在1260的条件下生产的,而烧结毡是1180。烧结网是按层数将不锈钢金属烧结网有序的叠放在一起,而烧结毡在结构上是杂乱无序的。
3、比纳污量
由于材质和结构的差异性,烧结毡在生产的过程中会出现多种梯度的孔径层,因此纳污量要更大一些。
4、比清洗周期
在相同清洗条件下,二者的清洗周期是由纳污量决定的。故而不锈钢烧结网的清洗周期更短。
5、比盲孔率
上面的工艺介绍已经足以表明,不锈钢烧结网的基本上是不存在盲孔的,而烧结毡或多或少会出现盲孔。
6、比过滤精度
不锈钢烧结网的过滤精度为1—300μm,而烧结毡为5—80μm。
烧结毡除尘滤筒用气泡法分析孔径分布
气泡法测量多孔材料的孔径分布是一种简单易行的方法,采用线性插值的方法解析气泡所测得的流量与压差曲线,可得到孔体积和孔数分布曲线。对不锈钢纤维毡的测试结果表明,该方法解析得到的孔径分布较真实地反映出金属纤维毡的孔结构状况,以孔体积分布峰值所对应的孔径可近似确定这种过滤材料的过滤精度,其值偏差不超过±5.1%。
气泡法的基本原理是利用对材料有良好浸润性的液体介质(常用的有水、乙醇、异丙醇、四氯化碳等),先将样品在液体介质中充分浸润,然后再用另一种液体,如压缩空气将样品的毛细孔中的液体推移出去。当气体压力由小逐渐增大到某一定值时,气体将浸渍液体从毛细孔中推出而冒出一个气泡,继续加大压力使浸渍了液体的孔道逐渐变为气体的通路,气体流量也随之增加,冒出的泡越来越多,直到所有孔中的液体被排出。通过测量仪记录下整个过程的流量与对应压差的关系曲线,当流量与压差关系由开始的曲线过渡到直线后,则表示全部贯通都已透过气体,这时为孔径分布检测的终点。
烧结毡上料机的工艺
低硫原料配入法
烧结毡上料机气中的SO2的来源主要是铁矿石中的FeS2或FeS、燃料中的S(有机硫、FeS2或FeS)与氧反应产生的,一般认为S 生成SO2的比率可以达到85%~95%. 因此,在确定烧结原料方案时,适当地选择配入含硫低的原料,从源头实现对SO2排放量的控制,是一种简单易行有效的措施。
该法因对原料含硫要求严格,使其来源受到了一定的,烧结矿的生产成本也会随着低硫原料的价格上涨而增加。就原料短缺的现状来看, 此法难以全面推广应用。
高烟囱稀释排放
烧结毡上料机气中SO2的质量浓度一般在1000~3000 mg/m3且烟气量大,若回收在经济上投资较大,故大多数国家仍以高烟囱排放为主,如美国烟囱**高达360m.
我国包钢烧结厂采用低含硫原料、燃料,烧结烟气经200m高烟囱排放,SO2**大落地质量浓度在0. 017mg/m3以下。宝钢的烧结厂采用200 m高烟囱稀释排放。这种方法简单易行,又比较经济。从长远来看,高烟囱排放仅是一个过渡。但在当时条件下,采用高烟囱稀释排放作为控制SO2 污染的手段是正确的。
烟气脱硫法
低硫原料配入法和高烟囱排放简单易行,又较经济。但我国SO2的控制是排放浓度和排放总量双重控制,因此,为根本消除SO2污染,烟气脱硫技术在烧结厂的应用势在必行。
烟气脱硫是控制烧结烟气中SO2污染**有效的方法。世界上研发的烟气脱硫技术有200多种,进入大规模商业应用的只有10余种,我国也先后引进了不同的脱硫装置主要用于火电厂,而国内用于烧结烟气脱硫的技术进展较慢。国内仅有几个小烧结上了脱硫设施。如广钢2台24平烧结机采用双碱法工艺,临汾钢厂利用烧结烟气处理焦化废水等,因脱硫设施或多或少存在一些问题,所以运行也不正常。
烧结毡折叠滤芯的还原性和再生性
烧结毡折叠滤芯是一种具备**的过滤性能的高精度、耐腐蚀和耐高温的过滤材料。在烧结毡中,它的纳污容量更大,并在使用中压力上升更慢,而更换的周期也更长。同时烧结毡的压力损失更小,并具备优良的渗透率和高孔隙率,通过焊接加工可以增加过滤的面积。
烧结毡折叠滤芯在使用中,其生产成本相对其他过滤材料而言也是比较高的。为节约降耗,同时也为了有利于环境保护,针对烧结毡有利还原再生的条件,可以进行再生处理。在还原再生过程中要全面考虑滤芯工作状态,过滤系统污染物类型及清洗程序。烧结毡的清洗方法有热处理清洗、化学清洗以及超声波三种清洗方式。化学清洗是**常用的也是**广泛和有效的清洗溶剂为酸碱清洗液。化学清洗法是针对收集聚脂凝结物过滤器常用的效果**好的清洗方法。
烧结毡折叠滤芯采用的超声波清洗则是一种连续加工和膨胀的加工方式。采用这种加工方式效率更高,通用性更强。而无论烧结毡采用哪种清洗的方式,都需要在清洗后进行完整性检查
烧结温度对纤维烧结毡的影响
烧结工艺是影响金属纤维烧结毡微结构的一个关键过程,而烧结温度是金属纤维烧结毡工艺**重要的参数,本文以6 μm纤维毡为例进行分析。6 μm纤维毡在这3种温度下都有明显的烧结颈,但是在3种温度下纤维烧结毡展现了3种不同的形貌。a是6 μm纤维在1 200 ℃烧结后形成的烧结颈,上下2根垂直的纤维在相切处形成烧结颈,且烧结毡的直径大于纤维直径,但是2根纤维没有熔合的趋势;当烧结温度为1 250 ℃时,2根垂直纤维的烧结毡直径比1 200 ℃时更大,且烧结毡附近处纤维有熔合的趋势,这反映了烧结毡处形成的新晶界通过晶界扩散同时向上下2根纤维推进,且烧结毡附近纤维直径有所收缩,这可能是因为随着烧结温度的升高,金属原子沿着纤维长度方向扩散至烧结毡处,导致纤维直径收缩,而1 200 ℃的纤维烧结毡没有此现象;当烧结温度为1 300 ℃时,烧结毡附近的纤维有明显的融合,这是由于烧结温度继续升高,晶界扩散更快,烧结毡附近纤维中物质扩散到新晶粒中,从而熔合在一起,此时烧结毡处纤维也有比较明显的收缩,6 μm纤维毡在1 300 ℃时无熔断。
纤维烧结毡搭接点的焊接是通过扩散进行的。烧结初期,相互接触的纤维搭接点逐渐形成烧结毡的连接,此时搭接点是不连续的,且有大量孔隙,扩散的主要机制是表面扩散;烧结中期,烧结毡的孔隙逐渐消失,烧结毡逐渐形成晶界,此时扩散的主要机制是晶界扩散;烧结后期,烧结毡附近晶粒开始长大,此时晶粒长大体扩散是主要机制。扩散的实质是原子的热运动,温度显著影响着原子扩散速度,对于表面扩散来说,只有当烧结温度足以使纤维表面原子的热运动克服表面能垒时,才能形成烧结毡,因此纤维烧结毡应超过一定温度。同样,烧结温度影响着纤维原子晶界扩散的速度,烧结温度越高晶界扩散速度越快,纤维烧结毡速度越快;但是过高的烧结温度会使纤维出现晶粒过大、丝径收缩和过熔等缺陷,这是纤维烧结毡工艺需要避免的。